11 research outputs found

    The smartphone-based offline indoor location competition at IPIN 2016: analysis and future work

    Get PDF
    This paper presents the analysis and discussion of the off-site localization competition track, which took place during the Seventh International Conference on Indoor Positioning and Indoor Navigation (IPIN 2016). Five international teams proposed different strategies for smartphone-based indoor positioning using the same reference data. The competitors were provided with several smartphone-collected signal datasets, some of which were used for training (known trajectories), and others for evaluating (unknown trajectories). The competition permits a coherent evaluation method of the competitors' estimations, where inside information to fine-tune their systems is not offered, and thus provides, in our opinion, a good starting point to introduce a fair comparison between the smartphone-based systems found in the literature. The methodology, experience, feedback from competitors and future working lines are described.We would like to thank Tecnalia Research & Innovation Foundation for sponsoring the competition track with an award for the winning team. We are also grateful to Francesco Potortì, Sangjoon Park, Jesús Ureña and Kyle O’Keefe for their invaluable help in promoting the IPIN competition and conference. Parts of this work was carried out with the financial support received from projects and grants: LORIS (TIN2012-38080-C04-04), TARSIUS (TIN2015-71564-C4-2-R (MINECO/FEDER)), SmartLoc (CSIC-PIE Ref.201450E011), “Metodologías avanzadas para el diseño, desarrollo, evaluación e integración de algoritmos de localización en interiores” (TIN2015-70202-P), REPNIN network (TEC2015-71426-REDT) and the José Castillejo mobility grant (CAS16/00072). The HFTS team has been supported in the frame of the German Federal Ministry of Education and Research programme “FHprofUnt2013” under contract 03FH035PB3 (Project SPIRIT). The UMinho team has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT — Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    On Wi-Fi Model Optimizations for Smartphone-Based Indoor Localization

    No full text
    Indoor localization and indoor pedestrian navigation is an active field of research with increasing attention. As of today, many systems will run on commercial smartphones, but most of them still rely on fingerprinting, which demands high setup and maintenance times. Alternatives, such as simple signal strength prediction models, provide fast setup times, but often do not provide the accuracy required for use cases like indoor navigation or location-based services. While more complex models provide an increased accuracy by including architectural knowledge about walls and other obstacles, they often require additional computation during runtime and demand prior knowledge during setup. Within this work, we will thus focus on simple, easy to set up models and evaluate their performance compared to real-world measurements. The evaluation ranges from a fully-empiric, instant setup, given that the transmitter locations are well known, to a highly optimized scenario based on some reference measurements within the building. Furthermore, we will propose a new signal strength prediction model as a combination of several simple ones. This tradeoff increases accuracy with only minor additional computations. All of the optimized models are evaluated within an actual smartphone-based indoor localization system. This system uses the phone’s Wi-Fi, barometer and IMU to infer the pedestrian’s current location via recursive density estimation based on particle filtering. We will show that while a 100% empiric parameter choice for the model already provides enough accuracy for many use cases, a small number of reference measurements is enough to dramatically increase such a system’s performance

    Using Barometer for Floor Assignation within Statistical Indoor Localization

    No full text
    This paper presents methods for floor assignation within an indoor localization system. We integrate the barometer of the phone as an additional sensor to detect floor changes. In contrast to state-of-the-art methods, our statistical model uses a discrete state variable as floor information, instead of a continuous one. Due to the inconsistency of the barometric sensor data, our approach is based on relative pressure readings. All we need beforehand is the ceiling height including the ceiling’s thickness. Further, we discuss several variations of our method depending on the deployment scenario. Since a barometer alone is not able to detect the position of a pedestrian, we additionally incorporate Wi-Fi, iBeacons, Step and Turn Detection statistically in our experiments. This enables a realistic evaluation of our methods for floor assignation. The experimental results show that the usage of a barometer within 3D indoor localization systems can be highly recommended. In nearly all test cases, our approach improves the positioning accuracy while also keeping the update rates low

    Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand

    No full text
    With the ubiquity of smartphones, the interest in indoor localization as a research area grew. Methods based on radio data are predominant, but due to the susceptibility of these radio signals to a number of dynamic influences, good localization solutions usually rely on additional sources of information, which provide relative information about the current location. Part of this role is often taken by the field of activity recognition, e.g., by estimating whether a pedestrian is currently taking the stairs. This work presents different approaches for activity recognition, considering the four most basic locomotion activities used when moving around inside buildings: standing, walking, ascending stairs, and descending stairs, as well as an additional messing around class for rejections. As main contribution, we introduce a novel approach based on analytical transformations combined with artificially constructed sensor channels, and compare that to two approaches adapted from existing literature, one based on codebooks, the other using statistical features. Data is acquired using accelerometer and gyroscope only. In addition to the most widely adopted use-case of carrying the smartphone in the trouser pockets, we will equally consider the novel use-case of hand-carried smartphones. This is required as in an indoor localization scenario, the smartphone is often used to display a user interface of some navigation application and thus needs to be carried in hand. For evaluation the well known MobiAct dataset for the pocket-case as well as a novel dataset for the hand-case were used. The approach based on analytical transformations surpassed the other approaches resulting in accuracies of 98.0% for pocket-case and 81.8% for the hand-case trained on the combination of both datasets. With activity recognition in the supporting role of indoor localization, this accuracy is acceptable, but has room for further improvement

    Smartphone-Based Indoor Localization within a 13th Century Historic Building

    No full text
    Within this work we present an updated version of our indoor localization system for smartphones. The pedestrian’s position is given by means of recursive state estimation using a particle filter to incorporate different probabilistic sensor models. Our recently presented approximation scheme of the kernel density estimation allows to find an exact estimation of the current position, compared to classical methods like weighted-average. Absolute positioning information is given by a comparison between recent Wi-Fi measurements of nearby access points and signal strength predictions. Instead of using time-consuming approaches like classic fingerprinting or measuring the exact positions of access points, we use an optimization scheme based on a set of reference measurements to estimate a corresponding Wi-Fi model. This work provides three major contributions to the system. The most essential contribution is the novel state transition based on continuous walks along a navigation mesh, modeling only the building’s walkable areas. The localization system is further updated by incorporating a threshold-based activity recognition using barometer and accelerometer readings, allowing for continuous and smooth floor changes. Within the scope of this work, we tackle problems like multimodal densities and sample impoverishment (system gets stuck) by introducing different countermeasures. For the latter, a simplification of our previous solution is presented for the first time, which does not involve any major changes to the particle filter. The goal of this work is to propose a fast to deploy localization solution, that provides reasonable results in a high variety of situations. To stress our system, we have chosen a very challenging test scenario. All experiments were conducted within a 13th century historic building, formerly a convent and today a museum. The system is evaluated using 28 distinct measurement series on four different test walks, up to 310 m length and 10 min duration. It can be shown, that the here presented localization solution is able to provide a small positioning error, even under difficult conditions and faulty measurements. The introduced filtering methods allow for a real fail-safe system, while the optimization scheme enables an on-site setup-time of less then 120 min for the building’s 2500 m2 walkable area

    Proceedings from the 9th annual conference on the science of dissemination and implementation

    No full text
    corecore